37 (ECO-I) 1·4

2016

ECONOMICS

Paper: 1.4

(Statistical Methods for Economic Analysis)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

1. Answer the following:

 2×4

- (a) The mean and variance of a binomial distribution are quoted as 2·10 and 1·34. Which of the numbers is the variance? Give reason for your answer.
- (b) Under what condition will the Lorenz Curve be a straight line?
- (c) Why is it necessary to deflate some time series?

Contd.

(d) Distinguish between a probability mass function and a probability density function.

2. Answer any three of the following:

8x3

- (a) How is the Index of Industrial Production different from a price index number? What are the main uses of the former?

 4+4
- (b) State the Pareto's law of income distribution. Explain why the Paretian distribution is not suitable for representing the lower end of the income distribution. 2+6
- (c) What is a standard normal distribution? Discuss its main properties. 2+6
- (d) Distinguish between mutually exclusive and independent events. Given that P(A) = 0.15 and P(B) = 0.25, what is P(AB), where the events are mutually exclusive and when they are independent? 5+3

(e) How is probability conceptualised according to the axiomatic approach? Why is this approach considered superior to the conventional mathematical and empirical definitions of probability?

3. Answer any three of the following:

ataviane qui ataua vi a impavil

16×3

- (a) Explain the features of the Laspayre's, the Paache's and the Fisher's index numbers. Discuss their relative merits from theoretical and practical purposes.

 9+7
- (b) Explain the ideas of the Lorenz Curve, the line of equal distribution and the Gini co-efficient. Show how they are interrelated. 10+6
- (c) With the help of suitable examples distinguish between a discrete and a continuous random variable. How are their probability distributions different? Illustrate the features of the Binomial Distribution as the distribution of a discrete random variable. 6+2+8

- (d) Define mathematical expectation of a discrete random variable and explain the interpretation of the idea with the help of an example. Device the addition and multiplication rules of expedition.

 5+5+6
 - (e) Present a comparative analysis of the basic features of the bionomial and the Poisson distributions.